Math Virtual Learning

Precalculus with Trigonometry

Students will verify Trigonometric Identities using the Double Angle Identities

May 1st, 2020

Precalculus with Trigonometry Lesson: May 1st, 2020

Objective/Learning Target:

Students will verify Trigonometric Identities using the Double Angle Identities

Today's lesson will cover how to use the Double Angle Identities to verify trigonometric identities. A reminder that we covered verifying identities in the Friday, April 24th and Monday, April 27th lesson.

Let's Get Started! Watch Video: Verifying Identities Using Double Angle Formula

Double Angle Identities

$\sin 2 x=2 \sin x \cos x$

$\cos 2 x=\cos ^{2} x-\sin ^{2} x$

$$
=2 \cos ^{2} x-1
$$

$$
=1-2 \sin ^{2} x
$$

$\tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}$

Example: Verify that $\cot x \sin 2 x=1+\cos 2 x$ is an identity.

$$
\begin{array}{rll}
\cot x \sin 2 x & =\frac{\cos x}{\sin x} \sin 2 x & \text { Quotient identity } \\
& =\frac{\cos x}{\sin x}(2 \sin x \cos x) & \begin{array}{l}
\text { Double-angle } \\
\text { identity }
\end{array} \\
& =2 \cos ^{2} x & \\
& =1+\cos 2 x & \begin{array}{l}
\cos 2 x=2 \cos ^{2} x-1 \Rightarrow \\
2 \cos ^{2} x=1+\cos 2 x
\end{array}
\end{array}
$$

Example
Ex 1. Verify the following identity.

$$
\begin{aligned}
& (\sin x+\cos x)^{2}=1+\sin 2 x \\
= & (\sin x+\cos x)(\sin x+\cos x) \\
= & \sin ^{2} x+\sin x \cos x+\cos x \sin x+\cos ^{2} x \\
= & \sin ^{2} x+2 \sin x \cos x+\cos ^{2} x \\
= & \sin ^{2} x+\cos ^{2} x+2 \sin x \cos x \\
= & 1+2 \sin x \cos x=1+\sin 2 x
\end{aligned}
$$

Pythago rein Identity:

$$
\sin ^{2} x+\cos ^{2} x=1
$$ for sine:

Practice

Use the Double Angle Identities to verify the following equations.

1 Verify the identity $1-\cos 2 x=\tan x \sin 2 x$.

2 Prove that $\frac{\sin \theta+\sin 2 \theta}{1+\cos \theta+\cos 2 \theta}=\tan \theta$.

3 Prove the identity: $\tan 2 x+\frac{1}{\cos 2 x}=\frac{\sin x+\cos x}{\cos x-\sin x}$

Practice - ANSWERS

$$
\begin{aligned}
& 1 \begin{aligned}
& 1-\cos 2 x=\tan x \sin 2 x \\
& 1-\cos 2 x=\left(\frac{\sin x}{\cos x}\right)(2 \sin x \cos x) \\
& 1-\cos 2 x=2 \sin ^{2} x \\
& 1-\left(1-2 \sin ^{2} x\right)=2 \sin ^{2} x \\
& 2 \sin ^{2} x=2 \sin ^{2} x
\end{aligned} \\
& \begin{aligned}
2 \text { LHS } & =\frac{\sin \theta+2 \sin \theta \cos \theta}{1+\cos \theta+\left(2 \cos ^{2} \theta-1\right)} \\
& =\frac{\sin \theta(1+2 \cos \theta)}{\cos \theta(1+2 \cos \theta)} \quad \text { (factorise) } \\
& =\frac{\sin \theta}{\cos \theta} \\
& =\tan \theta \\
& =\text { RHS }
\end{aligned}
\end{aligned}
$$

Additional Practice and Resources:

Additional Resource Videos: Verifying Identities with Double Angle

Additional example of verifying with Double Angle

Additional Practice: Verify with Double Angle Identities - Kuta
Try problems \#13-16

